

Journal of Alloys and Compounds 323-324 (2001) 308-311

and compoi ind'

www.elsevier.com/locate/jallcom

EPR Identification of coupled Yb³⁺ ion pairs in optically bistable compound CsCdBr₃:Yb

V. Mehta^{a,c}, O. Guillot-Noël^a, D. Simons^a, D. Gourier^{a,*}, Ph. Goldner^b, F. Pellé^b

^aLaboratoire de Chimie Appliquée de l'Etat Solide, Ecole Nationale Supérieure de Chimie de Paris (ENSCP), UMR CNRS 7574, 11 rue Pierre et Marie Curie, 75231 Paris Cedex 05, France

^bLaboratoire de Physico-Chimie des Matériaux, CNRS-UPR 211, 1 Place Aristide Briand, 92190 Meudon-Bellevue, France ^cKalindi College, University of Delhi, East Patel Nagar, New Delhi 110008, India

Abstract

Electron Paramagnetic Resonance (EPR) studies on ytterbium ions in weakly doped CsCdBr₃ are reported. Analysis of the characteristic features of the observed EPR spectra and their angular dependence shows that Yb^{3+} ions substitute for Cd^{2+} ions in D_{3d} point site symmetry mainly to form weakly antiferromagnetically coupled symmetric pair complexes of the type $Yb^{3+}-V_{Cd}-Yb^{3+}$, with interionic separation of around 5.9 Å and J exchange coupling value of -0.0016 cm⁻¹. Several weaker resonance lines are also observed which are assigned to single ion Yb³⁺ centers in perturbed sites of lower symmetry. © 2001 Elsevier Science BV. All rights reserved.

Keywords: Insulators; Crystal growth; Crystal structure and symmetry; Exchange and superexchange; Electron paramagnetic resonance

1. Introduction

The interesting phenomenon of intrinsic optical bistability (IOB) originating from rare earth ion pairs has been observed at low temperature in the dimer isostructural systems $Cs_3Y_2Br_9:10\%$ Yb³⁺ and $Cs_3Lu_2Br:10\%$ Yb³⁺ [1,2] and more recently in a quasi one-dimensional compound CsCdBr₃:1% Yb³⁺ [3]. The studies on these materials suggest that intense bistable pair luminescence can result from co-operative non-linearities mediated by local field effects. These non-linearites arise from strong ion-ion coupling within well-isolated dimer units and energy migration in the Yb³⁺ pairs has a degrading effect on bistable emission. Thus, a precise knowledge of ionion coupling mechanisms in such pairs is of fundamental interest and could help to better understand and optimise bistable luminescence. Electron Paramagnetic Resonance (EPR) spectroscopy is a powerful technique to probe such ion-ion interactions in the ground state of a coupled paramagnetic system. In the present work, EPR studies have been performed on IOB compound CsCdBr₂:1.3% Yb^{3+} . The host CsCdBr₃ crystallises in the hexagonal structure of space group $P6_3/mmc$ (D⁴_{6h}) consisting of

linear chains of face sharing $(CdBr_6)^{4-}$ octahedra parallel to the crystallographic *c*-axis with Cs⁺ ions occupying sites between the chains. Point symmetries are D_{3h} for Cs⁺ and D_{3d} for Cd^{2+} . A striking feature of $CsCdBr_3$ is that when rare-earth (RE³⁺) ions such as Yb³⁺ are incorporated in the Cd²⁺ lattice position, they enter nearly exclusively as charge compensated ion-pair centres, even at low dopant concentration. The main RE center is a symmetric in chain $RE^{3+}-V_{Cd}-RE^{3+}$ pair complex identified by McPherson and Henling by EPR experiments on Gd^{3+} [4,5] where V_{Cd} denotes Cd^{2+} vacancy. Each RE^{3+} ion of the pair has a C_{3v} site symmetry and the interionic separation, R, is around 6.0 Å. A minority $RE^{3+}-(C_8^+)$ vacancy) complex of lower symmetry (C_s) was also identified by EPR [6]. Subsequent laser-spectroscopic studies on $CsCdBr_3$ doped with Nd^{3+} [7], Er^{3+} [8] and Pr^{3+} [9] have reported the presence of a minority asymmetric in chain $RE^{3+}-RE^{3+}-V_{Cd}$ complex, with *R* around 3.4 Å.

2. Experimental details

CsCdBr₃ single crystals with 1.3% ytterbium concentration were grown by Bridgman method. EPR spectra were recorded on a Bruker ESP 300e spectrometer equipped with a variable temperature accessory from

^{*}Corresponding author.

E-mail address: gourierd@ext.jussieu.fr (D. Gourier).

Oxford Instrument. The microwave frequency was measured with a Systron Donner frequency-counter. Typical measurements were made at 7 K with a microwave power of 20 mW and a frequency of approximately 9.5 GHz.

3. Results and discussion

Free Yb³⁺ has a 4f¹³ configuration. The ground state is ${}^{2}F_{7/2}$ and the ${}^{2}F_{5/2}$ excited state is around 10 000 cm⁻¹. In the trigonal field of the D_{3d} symmetry, J=7/2 level splits into four Kramers doublets. At liquid helium temperature, only the lowest doublet is populated and thus the EPR spectrum can be treated by a Hamiltonian with an effective spin S = 1/2. In addition to even isotopes (nuclear spin I = 0), ytterbium has two odd isotopes which give rise to hyperfine structure, ¹⁷¹Yb with nuclear spin I = 1/2 (natural abundance 14.4%) and ¹⁷³Yb with nuclear spin I = 5/2 (natural abundance 16.6%).

Fig. 1 shows the principal EPR signal of Yb³⁺ in CsCdBr₃ recorded with external magnetic field *B* parallel to the crystallographic *c*-axis. The angular dependence of this signal in the ac (or bc) and ab crystallographic planes shows that the resonance lines have axial symmetry about the trigonal *c*-axis. As will be shown below, all the important features of the spectrum can be accurately described by assigning the resonance lines to the weakly antiferromagnetically coupled pairs of Yb³⁺ ions of the type ^{even}Yb-V_{Cd}-^{even}Yb, ¹⁷¹Yb-V_{Cd}-^{even}Yb and ¹⁷³Yb-V_{Cd}-^{even}Yb in identical crystallographic sites.

The spin Hamiltonian for a pair of identical interacting ions 1 and 2 can be written as:

$$H = H_1 + H_2 + H_{\text{int}} \tag{1}$$

where H_1 and H_2 take the form of a spin Hamiltonian,

Fig. 1. Experimental and simulated EPR spectrum of $CsCdBr_3$:1.3% Yb^{3+} at 7 K with the external magnetic field *B* parallel to the crystallographic *c*-axis. The stars indicate very weak EPR lines due to single ion Yb^{3+} centers in perturbed sites of lower symmetry.

relevant to an isolated ion and the interaction term H_{int} is [10]:

$$H_{\rm int} = -2J \vec{S_1} \cdot \vec{S_2} + \frac{\beta^2}{R^3} \left[-2g_{\parallel}^2 (S_{1z} S_{2z}) + \frac{g_{\perp}^2}{2} (S_{1+} S_{2-+} S_{1-} S_{2+}) \right]$$
(2)

The first and the second terms in the above expression are the isotropic exchange and anisotropic dipolar contributions respectively, J is a scalar exchange interaction, R is the RE—RE distance and S_1 and S_2 are the effective spins of the lowest ground state Kramers doublet of the two ions. The pure magnetic dipole–dipole expression has been used for the dipolar interaction because the distances between the two ions of a pair are much larger than the ion size. The *z*-axis (RE—RE axis) is parallel to the crystal symmetry axis in expression (2).

For similar ions without hyperfine structure, when B is parallel to z, total spin Hamiltonian in Eq. (1) becomes

$$H = g_{\parallel} \beta B(S_{1z} + S_{2z}) + (4D_{1-}2J)(S_{1z}S_{2z}) + (D_2 - J)(S_{1+}S_{2-} + S_{1-}S_{2+})$$
(3)

where $D_1 = \beta^2 (-g_{\parallel}^2)/2R^3$ and $D_2 = \beta^2 (g_{\perp}^2)/2R^3$

From the eigen states of this Hamiltonian, we expect two $\Delta M_s = \pm 1$ transitions at magnetic fields

$$B_{\pm} = B_o \left[1 \pm \frac{(-2D_1 + D_2)}{g_{\parallel} \beta B_o} \right]$$
(4)

where B_o is the center field of resonance.

When ion 1 has a hyperfine structure (for example for the pairs of the type 171 Yb-V_{Cd}- ${}^{\text{even}}$ Yb or 173 Yb-V_{Cd}- ${}^{\text{even}}$ Yb), the terms $A_{\parallel}(S_{1z}I_{1z}) + 1/2A_{\perp}(S_{1+}I_{1-} + S_{1-}I_{1+})$ are added to Eq (3).

For a particular $m_1 = \langle I_z \rangle$ state, $\Delta M_s = \pm 1$ transitions can now be shown to occur at fields (theoretical treatment is similar to that outlined by Smith and Pilbrow [11]):

$$B_{1,2} = B_{o} \left[1 \mp \frac{2D_{1}'}{g_{\parallel}\beta B_{o}} - \frac{\left(\frac{1}{2}A_{\parallel}m_{1}\mp\phi\right)}{g_{\parallel}\beta B_{o}} - \frac{1}{2} \frac{A_{\perp}^{2} \left[I(I+1) - m_{1}^{2}\right](b_{1}^{2} + a_{2}^{2})}{(g_{\parallel}\beta B_{o})^{2}} \right]$$
$$B_{3,4} = B_{o} \left[1 \mp \frac{2D_{1}'}{g_{\parallel}\beta B_{o}} - \frac{\left(\frac{1}{2}A_{\parallel}m_{1}\pm\phi\right)}{g_{\parallel}\beta B_{o}} - \frac{1}{2} \frac{A_{\perp}^{2} \left[I(I+1) - m_{1}^{2}\right](a_{3}^{2} + b_{4}^{2})}{(g_{\parallel}\beta B_{o})^{2}} \right]$$
(5)

with corresponding relative intensities, to first order, being

$$\frac{1}{4}(a+b)^2$$
 and $\frac{1}{4}(a-b)^2$ (6)

respectively. The parameters D'_1 and D'_2 are defined as $D'_1 = D_1 - J/2$ and $D'_2 = D_2 - J$ and the other parameters ε , *a* and *b* are given as:

$$\varphi = \left(D_{2}^{\prime 2} + \frac{1}{4} A_{\parallel}^{2} m_{1}^{2} \right)^{1/2};$$

$$a = \frac{D_{2}^{\prime}}{\left[D_{2}^{\prime 2} + \left(\varphi - \frac{1}{2} A_{\parallel} m_{1} \right)^{2} \right]^{1/2}} = \frac{D_{2}^{\prime}}{f_{1}} \text{ and }$$

$$b = \frac{\varphi - \frac{1}{2} A_{\parallel} m_{1}}{f_{1}}$$

We expect 4(2I + 1) allowed $\Delta M_{\rm S} = \pm 1$ transitions when one of the ytterbium isotopes of a pair has a nuclear magnetic moment. Thus for ¹⁷¹Yb–V_{Cd}–^{even}Yb pairs there will be eight allowed transitions while for ¹⁷³Yb–V_{Cd}– ^{even}Yb pairs there will be 24 allowed transitions.

The spin Hamiltonian parameters, listed in Table 1, are determined by fitting the experimental spectrum with its computer simulation. Simulated spectrum, shown in Fig. 1, is obtained by assuming the resonance lines to be the derivative of Gaussian curves with a peak to peak line width of ~20 Gauss. The line positions and intensities are calculated from Eqs. (4), (5) and (6) and are depicted by a stick diagram in Fig. 1. In the case of 173 Yb–V_{Cd}– ${}^{\text{even}}$ Yb pairs, eight very weak resonance lines in the field range 2520–2840 Gauss are not shown in the stick diagram. The g_{\perp} and A_{\perp} parameters, given in Table 1, are obtained by a similar analysis of the main EPR signal recorded with external magnetic field *B* perpendicular to the *c*-axis.

The distance between the two Yb³⁺ ions in a pair can be directly computed from the experimentally determined values of the dipolar parameters D_1 and D_2 . From their measured values, an interionic separation, R, of 5.88 Å is calculated. This distance is in good agreement with the value of 5.93 Å for the Gd³⁺–V_{Cd}–Gd³⁺ complexes in CsCdBr₃ at 77 K obtained by McPherson et al. [4,5]. It is, however, much smaller than the distance of 6.72 Å

Table 1 Spin Hamiltonian parameters of the $Yb^{3+}-V_{Cd}-Yb^{3+}$ complexes in $CsCdBr_{3}{:}1.3\%\ Yb$

Parameter		
$ \begin{array}{c} g_{\parallel}\\ g_{\perp}\\ A_{\perp} (10^{-4} \text{ cm}^{-1}) \end{array} $	¹⁷¹ Vb	$2.503 \pm 0.001 \\ 2.619 \pm 0.001 \\ 666 \pm 5 \\ 182.0 \pm 0.5 \\ 708 \pm 4 \\ 193 2 \pm 0.5 \\ \end{cases}$
$A_{\perp} (10^{-4} \text{ cm}^{-1})$	¹⁷³ Yb ¹⁷¹ Yb ¹⁷³ Yb	
$D_1 (10^{-4} \text{ cm}^{-1}) D_2 (10^{-4} \text{ cm}^{-1}) J (10^{-4} \text{ cm}^{-1})$		-66.5 ± 0.3 72.8 ± 0.3 -16 ± 2

between two Cd²⁺ ions in second neighbour positions in the host lattice. This shows that there is a significant relaxation (about 12%) of Yb³⁺ ions towards the Cd²⁺ vacancy along the Yb³⁺–V_{Cd}–Yb³⁺ axis (*c*-axis). According to the sign of the *J* parameter in Table 1, the exchange coupling between the two Yb³⁺ ions of a pair is antiferromagnetic but extremely weak. The small value of *J* is not surprising as the two Yb³⁺ ions in a pair are fairly far apart.

Besides the main EPR signals discussed so far, several very weak EPR lines are also observed (few of these are indicated by stars in Fig. 1). From their angular-dependence, it is concluded that these weaker lines are due to non-axial Yb^{3+} centers.

The present EPR studies show that more than 95% of the Yb³⁺ ions in CsCdBr₃:1.3% Yb sample form symmetric $Yb^{3+}-V_{Cd}-Yb^{3+}$ pair complexes, the rest of the single Yb³⁺ ions being in perturbed sites of lower symmetry. It may thus be easy to distinguish the observed lines in the optical spectra of this compound by their relative intensities. All the lines in the luminescence excitation spectra in the narrow frequency region of the ${}^{2}F_{7/2}$ (0) \rightarrow ${}^{2}F_{5/2}(2')$ transition in Ref. [3] should thus be assigned to symmetric ion pairs. No line is due to asymmetric complexes of the type $Yb^{3+}-Yb^{3+}-V_{Cd}$. The hysteresis of near-infrared and cooperative up-conversion luminescence as a function of incident laser intensity was observed exclusively for excitation of the optical line about 2 cm⁻¹ above the main absorption line of $Yb^{3+}-V_{Cd}-Yb^{3+}$ centers [3]. This relatively intense transition was attributed to asymmetric pairs $Yb^{3+}-Yb^{3+}-V_{Cd}$, which now appears unlikely on the basis of the present EPR experiments.

4. Conclusion

From the present EPR studies on CsCdBr₃:Yb³⁺, it has been possible to identify weakly antiferromagnetically coupled symmetric Yb³⁺–V_{Cd}–Yb³⁺ ion pairs. Excellent agreement is achieved between experimental spectra and those obtained by computer simulations, assuming complexes of the type ^{even}Yb–V_{Cd}–^{even}Yb, ¹⁷¹Yb–V_{Cd}–^{even}Yb, ¹⁷³Yb–V_{Cd}–^{even}Yb. These studies have also shown the existence of single ion Yb³⁺ centers of lower symmetry in very small proportions. It is important to note that there are no asymmetric pair complexes of the type Yb³⁺–Yb³⁺– V_{Cd}. This implies that observed bistable luminescence in CsCdBr₃:1% Yb [3] should be interpreted in terms of symmetric pair complexes.

References

 M.P. Hehlen, H.U. Güdel, Q. Shu, S.C. Rand, J. Chem. Phys. 104 (1996) 1232.

- [2] S.R. Lüthi, M.P. Hehlen, T. Riedener, H.U. Güdel, J. Lumin. 76–77 (1998) 447.
- [3] M.P. Hehlen, A. Kuditcher, S.C. Rand, S. Lüthi, Phys. Rev. Lett. 82 (1999) 3050.
- [4] G.L. McPherson, L.M. Henling, Phys. Rev. B 16 (1977) 1889.
- [5] L.M. Henling, G.L. McPherson, Phys. Rev. B 16 (1977) 4756.
- [6] G.L. McPherson, K.O. Devaney, J. Phys. C 13 (1980) 1735.
- [7] C. Barthou, R.B. Barthem, J. Lumin. 46 (1990) 9.
- [8] Ph. Goldner, F. Pellé, J. Lumin. 55 (1993) 197.
- [9] J. Neukum, N. Bodenschatz, J. Heber, Phys. Rev. B 50 (1994) 3536.
 [10] O. Guillot-Noël, V. Mehta, B. Viana, D. Gourier, M. Boukhris, S. Jandl, Phys. Rev. B 61 (2000) 15338.
- [11] T.D. Smith, J.R. Pilbrow, Coord. Chem. Rev. 13 (1974) 173.